

Department of Computer Science Tarakeswar Degree College

Program outcomes/program specific outcomes/course outcomes

Department of Computer Science, Tarakeswar Degree College, offers 3 years **undergraduate** (honours/General) courses in Computer Science in accordance to the prescribed CBCS curriculum of Burdwan University. Generic course in Computer Science is offered for students of other departments and B.Sc. Program in Computer Science is also offered at the undergraduate level.

This department provides 14 Core Courses (CC papers), 4 Discipline Specific Elective (DSE papers) and 2 Skill Enhancement Course (SEC) for Semester-I to VI undergraduate B.Sc. Honours students. Beside that 4 General Electives (GE papers) also offers to other disciplines.

This department offers 4 Core Courses (CC papers), 2 Discipline Specific Elective (DSE papers) and 4 Skill Enhancement Course (SEC papers) for Semester-I to VI undergraduate B.Sc. General students.

The undergraduate honours/general course in Computer Science is intended to introduce the fundamental aspects of all branches of Computer Science to the students. Students learn about different area of computer science in this three year degree course, which enables them to identify their area of keen interest and hence provides the basic foundation of their higher studies and IT industry. They develop computer laboratory skills, critical thinking and reasoning to address different aspects of computer science.

PROGRAM OUTCOMES POs:

B.Sc (Hons/Gen) Graduates will be able to:

- **PO1.** Enable Graduates to develop logics which will help them to create programs using computer languages.
- **PO2.** Ensure Graduates with acquired skills and enhanced knowledge will be employable / become entrepreneurs or will pursue higher Education.

- **PO3.** Graduates with acquired knowledge of modern software tools will be able to contribute effectively as software engineers.
- **PO4.** Graduates will be able to comprehend the related concepts to Computer Science with Allied papers.
- **PO5.** Graduates will be imbibed with ethical values and social concerns to ensure peaceful society.
- **PO6.** Graduates will be able to comprehend the basic concepts learnt and apply in real life situations with analytical skills.

PROGRAM SPECIFIC OBJECTIVES (PSOs) :

- **PSO1.** To analyze, design and develop computing solutions by applying foundational concepts of Computer Science.
- **PSO2.** To apply software engineering principles and practices for developing quality software for scientific and business applications.
- **PSO3.** To adapt to emerging Information and Communication Technologies (ICT) to innovate ideas and solutions to existing/novel problems.

Course Outcomes of UG Honours Course

Course code	Course Title	Course Outcomes
CC-1	Programming	A student should be able to use:
	Fundamentals using	CO1. The basic concepts of programming structure
	C / C++	and its syntax
		CO2. The various types of arrays, its structure, types of
		Functions and String handling mechanisms.
		CO3. The Concepts of structures, Union, Pointers and
		File handling in C/C++.
		CO4. Standard input/output and file input/output
		operations.
		CO5. Object oriented programming in C++ to solve
		basic engineering problems.
CC-2	Computer System	A student should be able to:
	Architecture	CO1. Demonstrate computer architecture concepts
		related to design of modern processors, memories and I/Os.

Semester-I

	CO2.	Anal	yze	the	perfo	rmano	ce	of o	com	nmercially
	ava	ailable	e com	nputei	ſS.					
	CO3.	То	deve	elop	logic	for	ass	sembl	y	language
	pro	ogram	ming	5						

Semester-II

Course code	Course Title	Course Outcomes
CC-3		A student should be able to:
	Programming in	CO1. Identify classes, objects, members of a class and
	Java	relationships among them needed for a specific
		problem.
		CO2. Write Java application programs using OOP
		principles and proper program structuring.
		CO3. Demonstrate the concepts of polymorphism and
		inheritance.
		CO4. Write Java programs to implement error handling
		techniques using exception handling.
CC-4		A student should be able to:
	Discrete	CO1. Write an argument using logical notation and
	Structure	determine if the argument is or is not valid.
		CO2. Demonstrate the ability to write and evaluate a
		proof or outline the basic structure of and give
		examples of each proof technique described.
		CO3. Understand the basic principles of sets and
		operations in sets.
		CO4. Apply counting principles to determine
		probabilities.
		CO5. Model problems in Computer Science using
		graphs and trees.

Semester-III

Course code	Course Title	Course Outcomes
CC-5	Data Structure	A student should be able to:
		CO1. Impart the basic concepts of data structures and
		algorithms
		CO2. Understand basic concepts about stacks, queues,
		lists, trees and graphs

		 CO3. Understanding about writing algorithms and step by step approach in solving problems with the help of fundamental data structures CO4. Compare alternative implementations of data structures with respect to performance. CO5. Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing.
CC-6	Operating Systems	 A student should be able to: CO1. Describe and explain the fundamental components of a computer operating system. CO2. Define, restate, discuss, and explain the policies for scheduling, deadlocks, memory management, synchronization, system calls, and file systems. CO3. Describe and extrapolate the interactions among the various components of computing systems. CO4. Design and construct the following OS components: System calls, Schedulers, Memory management systems, Virtual Memory and Paging systems.
CC-7	Computer Networks	 A student should be able to: CO1. Explain the local, metropolitan and wide area networks using the Standard OSI reference model. CO2. Discussion of various networking technologies. CO3. Evaluate the challenges in building networks and solutions to those. CO4. Explain the analysis of different types of protocol and the comparison of number of data link, network and transport layer protocols.
SEC-1	Programming in Python	 A student should be able to: CO1. Explain basic principles of Python programming language. CO2. Implement object oriented concepts. CO3. Implement database and GUI applications.

Semester-IV

Course code	Course Title	Course Outcomes
CC-8	Design and Analysis of Algorithms	A student should be able to : CO1. Analyze the running time and space complexity of
		algorithms.

	İ	
		CO2. Describe, apply and analyze the complexity of
		divide and conquer , greedy, dynamic programming
		strategy.
		CO3. Able to Describe the classes P, NP, and NPComplete
		and be able to prove that a certain problem is
		NP-Complete.
		CO4. Able to analyze String matching algorithms.
CC-9	Software Engineering	A student should be able to:
		CO1. Understand basic SW engineering methods and
		practices, and their appropriate application.
		CO2. Role of project management including planning,
		scheduling and, risk management.
		CO3. Discuss data models, object models, context models
		and behavioural models.
		CO4. Understand of implementation issues such as
		modularity and coding standards.
		CO5. Understand to verification and validation including
		static analysis, and reviews.
		CO6. Describe software measurement and software risks.
CC-10	Database	A student should be able to:
	Management System	CO1. Describe the fundamental elements of relational
		database management systems.
		CO2. Explain the basic concepts of relational data model,
		entity-relationship model, relational database design,
		relational algebra and SQL.
		CO3. Design ER-models to represent simple database
		application scenarios.
		CO4. Convert the ER-model to relational tables, populate
		relational database and formulate SQL queries on data.
		CO5. Improve the database design by normalization.
		CO6. Familiar with basic database storage structures and
		access techniques: file and page organizations, indexing
		methods including B tree, and hashing.
SEC-2	UNIX / Linux	A student should be able to:
	Programming	CO1. Understanding the basic set of commands and
		utilities in Linux/UNIX systems.
		CO2. To learn to develop software for Linux/UNIX
		systems.
		CO3. To learn the important Linux/UNIX library functions
		and system calls.
		CO4. To understand the inner workings of UNIX-like
		operating systems.

Department of Computer Science, Tarakeswar Degree College Program outcomes, program specific outcomes and course outcomes

CO5. To obtain a foundation for an advanced course in
operating systems.

Semester-V

Course code	Course Title	Course Outcomes
CC-11	Internet Technologies	 A student should be able to: CO1. Analyze a web page and identify its elements and attributes. CO2. Create web pages using XHTML and Cascading Style Sheets. CO3. Build dynamic web pages using JavaScript (Client side programming). CO4. Create XML documents and Schemas.
CC-12	Theory of Computation	 A student should be able to: CO1. Explain the basic concepts of finite automata and regular expressions. CO2. Describe the types of grammar and derivation tree. CO3. Test the equivalence of pushdown automata and CFL. CO4. Develop a computational model using Turing machine for the given problem. CO5. Examine the complexity for P and NP completeness for the given problem.
DSE-1	Microprocessors	 Students are able to: CO1. Recall and apply a basic concept of digital fundamentals to Microprocessor based personal computer system. CO2. Identify a detailed s/w & h/w structure of the Microprocessor. CO3. Illustrate how the different peripherals (8255, 8253 etc.) are interfaced with Microprocessor. CO4. Distinguish and analyze the properties of Microprocessors & Microcontrollers. CO5. Analyze the data transfer information through serial & parallel ports. CO6. Train their practical knowledge through laboratory experiments.
DSE-2	System Programming	Upon completion of this course, students are be able to:

CO1	D1. To cover the major topics in compiler design with
ε	emphasis on solving the problems encountered in
c	designing a compiler regardless of the source language
	or the target machine
CO2	D2. Explore the use of compiler with its phases.
CO3	D3. Use of Syntax directed scheme for intermediate code
l l l g	generation.
CO4	J4. Construct & use of different compiler tools as LeX,
Y	Yacc for code generation & optimization.

Semester-VI

Course code	Course Title	Course Outcomes
CC-13	Artificial Intelligence	On completion of the course students will be able to:
		CO1. Understand concept of knowledge representation and predicate logic and transform the real life information in different representation
		CO2. Understand state space and its searching strategies.
		CO3. Understand machine learning concepts and range of problems that can be handled by machine learning.
		CO4. Understand the numerous applications and huge possibilities in the field of AI
		CO5. To analyze and formalize the problem as a state space, graph, design heuristics
		CO6. Ability to represent solutions for various real-life problem domains using logic based techniques
CC-14	Computer Graphics	After learning the course the students should be able to:
		 CO1. Explain fundamental concepts within computer graphics such as geometrical transformations, illumination models, removal of hidden surfaces and rendering CO2. Explain the ideas in some fundamental algorithms for computer graphics and to some extent be able to compare and evaluate them CO3. Explain and apply fundamental principles within interaction programming CO4. Explain and understand fundamental concepts within information visualization and scientific visualization.
DSE-3	Soft Computing	Upon completion of the course, the student are expected to :

		CO1. Analyze and integrate various soft computing techniques in order to solve problems effectively and
		efficiently
		CO2. Apply fuzzy logic and reasoning to handle uncertainty
		and solve engineering problems.
		CO3. Apply neural networks to pattern classification and
		regression problems.
		CO4. Apply genetic algorithms to combinatorial
		optimization problems.
		CO5. Apply these techniques in applications which involve
		perception, reasoning and learning.
DSE-4	Project Work /	A student should be able to:
	Dissertation	CO1. Understand programming language concepts,
		particularly Java and object-oriented concepts or go
		through research activities.
		CO2. Plan, analyze, design and implement a software
		project or gather knowledge over the field of research and
		design or plan about the proposed work.
		CO3. Demonstrate the ability to locate and use technical
		information from multiple sources.
		CO4. Demonstrate the ability to communicate effectively in
		speech and writing.
		CO5. Learn to work as a team and to focus on getting a
		working project done on time with each student being
		held accountable for their part of the project.
		CO6. Learn about and go through the software
		development cycle with emphasis on different processes -
		requirements, design, and implementation phases.

Course Outcomes of UG General Courses

Semester-I

Course code	Course Title		Course Outcomes
CC-1A	Problem solving Using	Upon completion of the course, the students will be able to:	
	Computer	CO1.	Bridge the fundamental concepts of computers
		wi	th the present level of knowledge of the students.
		CO2.	Explain basic principles of Python programming
		lar	nguage.
		CO3.	Implement object oriented concepts.
		CO4.	Implement GUI applications.

Semester-II

Course code	Course Title	Course Outcomes	
CC-1B	Database Management Systems	On successful completion of the course the students will be able to:	
		 CO1. Understand database concepts and structures and query language. CO2. Understand the E R model and relational model. CO3. To design and build a simple database system and demonstrate its competence CO4. Fundamental tasks involved with modeling, designing, and implementing a DBMS. 	

Semester-III

Course code	Course Title	Course Outcomes	
CC-1C	Operating Systems	A student should be able to:	
		CO1. Understands the different services provided by	
		Operating System at different level.	
		CO2. They learn real life applications of Operating	
		System in every field.	
		CO3. Understands the use of different process	
		scheduling algorithm and synchronization techniques	
		to avoid deadlock.	

--

		CO4. They will learn different memory management		
		techniques like paging, segmentation and demand		
		paging etc.		
		CO5. Demonstrate UNIX commands for file handling		
		and process control		
SEC-1	Office Automation	By learning the course, the students will be able:		
	Tools	CO1. To perform documentation.CO2. To perform accounting operations.CO3. To perform presentation skills.		

Semester-IV

Course code	Course Title	Course Outcomes		
CC-1D	Computer System	Upon completion of this course, the students will be able to:		
	Architecture			
		COI. Describe the fundamental organisation of a		
		computer system.		
		CO2. Explain the functional units of a processor.		
		CO3. Explain addressing modes, instruction formats and		
		program control statements.		
		CO4. Distinguish the organization of various parts of a		
		system memory hierarchy.		
		CO5. Exemplify in a better way the I/O and memory		
		organization.		
SEC-2	HTML Programming	Upon completion of the course students will be able to:		
		CO1. Use knowledge of HTML and CSS code and an HTML		
		editor to create personal and/or business websites		
		following current professional and/or industry standards.		
		CO2. Use critical thinking skills to design and create		
		websites.		

Semester-V

Course code	Course Title	Course Outcomes	
DSE-1A	Software Engineering	A student should be able to:	
		CO1. Students will be able to decompose the given	
		project in various phases of a lifecycle.	
		CO2. Students will be able to choose appropriate process	
		model depending on the user requirements.	
		CO3. Students will be able perform various life cycle	
		activities like Analysis, Design, Implementation, Testing	
		and Maintenance.	

		CO4. in CO5. ski	Students will be able to know various processes used all the phases of the product. Students can apply the knowledge, techniques, and ills in the development of a software product.
SEC-3	MySQL/PL-SQL	At the end	of the course the students are able to:
		CO1. Ap	Apply the basic concepts of Database Systems and plications.
		CO2. Use the basics of SQL and construct queries using	
		MySQL in database creation and interaction.	
		CO3.	Design a commercial relational database system
		(№	lySQL) by writing SQL using the system.
		CO4.	Analyze and Select storage and recovery techniques
		of	database system.

Semester-VI

Course code	Course Title	Course Outcomes	
DSE-1B	Computer Networks	A student should be able to:	
		CO1.	Recognize the technological trends of Computer
		Networking.	
		CO2.	Discuss the key technological components of the
		Ne	twork.
		CO3.	Evaluate the challenges in building networks and
		so	utions to those.
SEC-4	Programming in Visual	A student should be able to:	
	Basic	CO1.	Demonstrate fundamental skills in utilizing the tools
		of a visual environment such as command, menus and	
		toolbars.	
		CO2. Implement SDI and MDI applications using forms,	
		dialogs, and other types of GUI components.	
		CO3.	Implement the methods and techniques to develop
		projects.	
		CO4.	Learn the advantages of Controls in VB.
		CO5.	Design and develop the event- driven applications
		using Visual Basic	
		framework.	

Page **11** of **11**

-----X—------